Representing scenes for real-time context classification on mobile devices
نویسندگان
چکیده
In this paper we introduce the DCT-GIST image representation model which is useful to summarize the context of the scene. The proposed image descriptor addresses the problem of real-time scene context classification on devices with limited memory and low computational resources (e.g., mobile and other single sensor devices such as wearable cameras). Images are holistically represented starting from the statistics collected in the Discrete Cosine Transform (DCT) domain. Since the DCT coefficients are usually computed within the digital signal processor for the JPEG conversion/storage, the proposed solution allows to obtain an instant and “free of charge” image signature. The novel image representation exploits the DCT coefficients of natural images by modelling them as Laplacian distributions which are summarized by the scale parameter in order to capture the context of the scene. Only discriminative DCT frequencies corresponding to edges and textures are retained to build the descriptor of the image. A spatial hierarchy approach allows to collect the DCT statistics on image sub-regions to better encode the spatial envelope of the scene. The proposed image descriptor is coupled with a Support Vector Machine classifier for context recognition purpose. Experiments on the well-known 8 Scene Context Dataset as well as on the MIT-67 Indoor Scene dataset demonstrate that the proposed representation technique achieves better results with respect to the popular GIST descriptor, outperforming this last representation also in terms of computational costs. Moreover, the experiments pointed out that the proposed representation model closely matches other state-of-the-art methods based on bag of Textons collected on spatial hierarchy. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Plant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملReduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملMIPos: Mobile Image Positioning on Mixed Reality Web Applications ased on Mobile Sensors
In this paper we propose a position aware, user controlled and real time enabled visual approach to arrange real world images within virtual scenes by leveraging modern web APIs to get access to location, mobile sensors and camera. Enhancing a virtual scene with images of its real substitute to create Mixed Reality scenes involves the accurate positioning of real world images within their corre...
متن کاملHow Does the Use of Mobile Devices Affect Teachers’ Perceptions on Mobile Learning?
The purpose of this study is to investigate the potential impact and effectiveness of mobile learning in the context of a flipped classroom and also address implications for future curriculum design. The researchers developed a mathematics curriculum featuring the use of mobile devices in the context of a flipped classroom. Thirty pre-service secondary teachers participated in the study. They c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015